Objectives:

- Define an antiderivative.
- Compute the antiderivatives of some familiar functions.

Let f(x) be any function. We call g(x) an

if

For example, if f(x) = 3, some antiderivatives of f(x) are:

A way we could represent all of these solutions is:

_____·

In general, we write the antiderviative of f(x) as ______.

f(x)	Antiderivative of $f(x)$
f(x) = 0	
f(x) = 5	
$f(x) = 3x^2$	
$f(x) = x^2$	
f(x) = x	
$f(x) = x^n$	
$f(x) = \frac{1}{x}$	
$f(x) = 5x^2$	
f(x) = x - 3	
$f(x) = e^x$	
$f(x) = b^x$	

Some Antiderivative Rules:

If the antiderivative of f(x) is F(x) + c and the antiderivative of g(x) is G(x) + c then the antiderivative of f(x) + g(x) is

If the antiderivative of f(x) is F(x) + c and b is a constant, the antiderivative of $b \cdot f(x)$ is

Examples: Find the antiderivatives, (Don't forget "+c"!):

- 1. $F'(x) = 3x^4 + 7x^2 + 5$
- 2. $G'(z) = \frac{z^2 + 1}{\sqrt{z}}$
- 3. $k'(t) = \frac{2}{3} + \frac{4}{t} + \frac{7}{\sqrt{t}}$

More antiderivatives!

f(x)	Antiderivative of $f(x)$
$f(x) = \cos(x)$	
$f(x) = \sin(x)$	
$f(x) = (\sec(x))^2$	
$f(x) = \sec(x)\tan(x)$	
$f(x) = \frac{1}{1+x^2}$	
$f(x) = \frac{1}{\sqrt{1-x^2}}$	

More Examples: Find the antiderivatives:

- 1. $H'(x) = \sin(x) + \pi + (\sec(x))^2$
- 2. $s'(t) = 2^x \cos(x)$

(Did you remember to include "+c"?)

Initial value problems: Given f'(x), we have seen that we can find f(x) + c. If we also know the value of f(x) at some point, we can find the value of the constant c.

1. s'(t) = -32t + 8 and s(0) = 40. Find an equation for s(t).

2. $f''(\theta) = \sin(\theta) + \cos(\theta)$ and f'(0) = 3, f(0) = 4. (Find $f(\theta)$.)

3. A stopped car accelerated at $4\frac{m}{\sec^2}$ for 6 sec. Find a formula for velocity, v(t), and a formula for position, s(t).

4. Acceleration due to gravity on earth is $-32 \frac{\text{ft}}{\text{sec}^2}$. A pumpkin is dropped from a 64 ft tall building. How long does it take to hit the ground and what is the impact velocity?